515 research outputs found

    Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway

    Get PDF
    Accumulating evidence suggests that p21(Cip1) located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21(Cip1), which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress fibers in Ras-transformed cells, there is a decrease in the phosphorylation level of cofilin, which is indicative of a compromised ROCK/LIMK/cofilin pathway. Inhibition of MEK in Ras-transformed NIH3T3 results in restoration of actin stress fibers accompanied by a loss of cytoplasmic p21(Cip1), and increased phosphorylation of cofilin. Ectopic expression of cytoplasmic but not nuclear p21(Cip1) in Ras-transformed cells was effective in preventing stress fibers from being restored upon MEK inhibition and inhibited phosphorylation of cofilin. p21(Cip1) was also found to form a complex with ROCK in Ras-transformed cells in vivo. Furthermore, inhibition of the PI 3-kinase pathway resulted in loss of p21(Cip1) expression accompanied by restoration of phosphocofilin, which was not accompanied by stress fiber formation. These results suggest that restoration of cofilin phosphorylation in Ras-transformed cells is necessary but not sufficient for stress fiber formation. Our findings define a novel mechanism for coupling cytoplasmic p21(Cip1) to the control of actin polymerization by compromising the Rho/ROCK/LIMK/cofilin pathway by oncogenic Ras. These studies suggest that localization of p21(Cip1) to the cytoplasm in transformed cells contributes to pathways that favor not only cell proliferation, but also cell motility thereby contributing to invasion and metastasis

    Cis-Elements Involved in Alternative Splicing in the Rat Beta-Tropomyosin Gene - the 3'-Splice Site of the Skeletal-Muscle Exon-7 Is the Major Site of Blockage in Nonmuscle Cells

    Get PDF
    We have been using the rat beta-tropomyosin (beta-TM) gene as a model system to study the mechanism of alternative splicing. The beta-TM gene spans 10 kb with 11 exons and encodes two distinct isoforms, namely skeletal muscle beta-TM and fibroblast TM-1. Exons 1 - 5, 8, and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts, as well as in smooth muscle cells, whereas exons 7 and 1 0 are used exclusively in skeletal muscle cells. Our previous studies localized the critical elements for regulated alternative splicing to sequences within exon 7 and the adjacent upstream intron. We also demonstrated that these sequences function, in part, to regulate splice-site selection in vivo by interacting with cellular factors that block the use of the skeletal muscle exon in nonmuscle cells (1). Here we have further characterized the critical cis-acting elements involved in alternative splice site selection. Our data demonstrate that exon 7 and its flanking intron sequences are sufficient to regulate the suppression of exon 7 in nonmuscle cells when flanked by heterologous exons derived from adenovirus. We have also shown by both in vivo and in vitro assays that the blockage of exon 7 in nonmuscle cells is primarily at its 3'-splice site. A model is presented for regulated alternative splicing in both skeletal muscle and nonmuscle cells

    Myosin light chain kinase plays a role in the regulation of epithelial cell survival

    Get PDF
    Myosin II activation is essential for stress fiber and focal adhesion formation, and is implicated in integrin-mediated signaling events. In this study we investigated the role of acto-myosin contractility, and its main regulators, i.e. myosin light chain kinase (MLCK) and Rho-kinase (ROCK) in cell survival in normal and Ras-transformed MCF-10A epithelial cells. Treatment of cells with pharmacological inhibitors of MLCK (ML-7 and ML-9), or expression of dominant-negative MLCK, led to apoptosis in normal and transformed MCF-10A cells. By contrast, treatment of cells with a ROCK inhibitor (Y-27632) did not induce apoptosis in these cells. Apoptosis following inhibition of myosin II activation by MLCK is probably meditated through the death receptor pathway because expression of dominant-negative FADD blocked apoptosis. The apoptosis observed after MLCK inhibition is rescued by pre-treatment of cells with integrin-activating antibodies. In addition, this rescue of apoptosis is dependent on FAK activity, suggesting the participation of an integrin-dependent signaling pathway. These studies demonstrate a newly discovered role for MLCK in the generation of pro-survival signals in both untransformed and transformed epithelial cells and supports previous work suggesting distinct cellular roles for Rho-kinase- and MLCK-dependent regulation of myosin II

    Specificity of dimer formation in tropomyosins: influence of alternatively spliced exons on homodimer and heterodimer assembly

    Get PDF
    Tropomyosins consist of nearly 100% alpha-helix and assemble into parallel and in-register coiled-coil dimers. In vitro it has been established that nonmuscle as well as native muscle tropomyosins can form homodimers. However, a mixture of muscle alpha and beta tropomyosin subunits results in the formation of the thermodynamically more stable alpha/beta heterodimer. Although the assembly preference of the muscle tropomyosin heterodimer can be understood thermodynamically, the presence of multiple tropomyosin isoforms expressed in nonmuscle cells points toward a more complex principle for determining dimer formation. We have investigated the dimerization of rat tropomyosins in living cells by the use of epitope tagging with a 16-aa sequence of the influenza hemagglutinin. Employing transfection and immunoprecipitation techniques, we have analyzed the dimers formed by muscle and nonmuscle tropomyosins in rat fibroblasts. We demonstrate that the information for homo- versus heterodimerization is contained within the tropomyosin molecule itself and that the information for the selectivity is conferred by the alternatively spliced exons. These results have important implications for models of the regulation of cytoskeletal dynamics

    Alternatively spliced exons of the beta tropomyosin gene exhibit different affinities for F-actin and effects with nonmuscle caldesmon

    Get PDF
    The rat beta-tropomyosin (TM) gene expresses two isoforms via alternative RNA splicing, namely skeletal muscle beta-TM and fibroblast TM-1. The latter is also expressed in smooth muscle where it corresponds to smooth muscle beta-TM. Skeletal muscle beta-TM contains exons 7 and 10, whereas exons 6 and 11 are used in fibroblasts and smooth muscle. In order to study the properties of the alternatively spliced proteins, recombinant TMs derived from bacterial and insect cell expression systems were produced, including the normal beta gene products, fibroblast TM-1 and beta skeletal muscle TM, two carboxy-terminal chimeric TMs, TM-6/10 and TM-7/11, as well as a carboxyl-truncated version of each, TM-6Cla and TM-7Cla. The purified TM isoforms were used in actin filament association studies. The apparent TM association constants (Ka) were taken as the free concentration at half saturation and were found to be 6 microM for beta Sk TM, 8.5 for TM-6/10, 25 microM for TM-1, and 30 microM for TM-7/11 at an F-actin concentration of 42 microM. For the truncated TMs, the values determined were higher still but the binding was not carried out to full saturation. Isoforms were also produced using the baculovirus-insect cell system which produces proteins with an acetylated amino terminus as is normally found in vivo. This modification significantly enhanced the F-actin association of TM-1 but not the beta skeletal TM or the other isoforms. Fibroblast TM-2 or TM-3, both products of the alpha gene, enhanced the affinity of TM-1 for F-actin, demonstrating different isoforms can act cooperatively on binding to actin. This effect was not detected with the other expressed beta gene products. The presence of 83 kDa nonmuscle caldesmon was found to enhance the binding of TM-1 for F-actin. This effect was dependent on the presence of both exons 6 and 11, as caldesmon had little effect on the other beta gene products. Collectively these results demonstrate TMs differ in their affinity for F-actin, which can be altered by other TMs or actin-binding proteins. The beta tropomyosin isoforms were fluorescently-tagged and microinjected into cultured cells to study their in vivo localization where it was found that each of the full-length TMs bound to microfilaments but, at the light microscopy level, the isoforms were not differentially localized in these fibroblasts

    Alternative splicing of tropomyosin pre-mRNAs in vitro and in vivo

    Get PDF
    A single rat gene encodes both fibroblast TM-1 and skeletal muscle beta-tropomyosin by an alternative RNA-processing mechanism. The gene contains 11 exons: Exons 1-5 and exons 8 and 9 are constitutive exons common to all mRNAs expressed from this gene; exons 6 and 11 are used in fibroblasts as well as smooth muscle; exons 7 and 10 are used exclusively in skeletal muscle. We have studied the internal alternative RNA splice choice (exons 6 and 7) of the rat tropomyosin 1 gene in vitro, using nuclear extracts obtained from HeLa cells. Use of alternative splice sites in vitro is dependent on the ionic conditions of the assay, and correct splicing occurs only under well-defined salt conditions. Splicing of exon 5 to exon 6 (fibroblast-type splice) and exon 5 to exon 7 (skeletal muscle-type splice) was dependent on precursors in which exon 6 or 7 was first joined to exon 8. The same patterns of alternatively spliced RNAs were formed when similar templates were introduced in HeLa cells by transfection. Thus, there appears to be an ordered pathway of splicing in which the internal alternatively spliced exons must first be joined to the downstream constitutive exon before they can be spliced to the upstream constitutive exon. The data are consistent with a model in which the critical event in alternative splicing occurs during the joining of exon 6 to exon 8 (fibroblast-type splice) or exon 7 to exon 8 (skeletal muscle-type splice)

    Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain

    Get PDF
    In this study we report on the developmental and regional expression of two brain-specific isoforms of tropomyosin, TMBr-1 and TMBr-3, that are generated from the rat alpha-tropomyosin gene via the use of alternative promoters and alternative RNA splicing. Western blot analysis using an exon-specific peptide polyclonal antibody revealed that the two isoforms are differentially expressed in development with TMBr-3 appearing in the embryonic brain at 16 days of gestation, followed by the expression of TMBr-1 at 20 days after birth. TMBr-3 was detected in all brain regions examined, whereas TMBr-1 was detected predominantly in brain areas that derived from the prosencephalon. Immunocytochemical studies on mixed primary cultures made from rat embryonic midbrain indicate that expression of the brain-specific epitope is restricted to neurons. The developmental pattern and neuronal localization of these forms of tropomyosin suggest that these isoforms have a specialized role in the development and plasticity of the nervous system

    Alternative splicing of beta-tropomyosin pre-mRNA: cis-acting elements and cellular factors that block the use of a skeletal muscle exon in nonmuscle cells

    Get PDF
    The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM and fibroblast TM-1 by an alternative RNA-splicing mechanism. This gene contains 11 exons. Exons 1-5, 8, and 9 are common to all mRNAs expressed from the gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle cells, whereas exons 7 and 10 are used in skeletal muscle cells. In this study we have carried out an extensive mutational analysis to identify cis-acting elements that block the use of the skeletal muscle-specific exon 7 in nonmuscle cells. These studies localize the critical elements for regulated alternative splicing to sequences within exon 7 and the adjacent upstream intron. In addition, mutations that inactivate the 5'- or 3'-splice sites of exon 6 do not result in the use of the skeletal muscle-specific exon 7 in nonmuscle cells, suggesting that splice-site selection in vivo is not regulated by a simple cis-acting competition mechanism but, rather, by a mechanism that inhibits the use of exon 7 in certain cellular environments. In support of this hypothesis we have identified sequence-specific RNA-binding proteins in HeLa cell nuclear extracts using native gel electrophoresis and binding competition assays. Mutations in the pre-mRNA that result in the use of the skeletal muscle exon in vivo also disrupt the binding of these proteins to the RNA in vitro. We propose that the binding of these proteins to the pre-mRNA is involved in regulated alternative splicing and that this interaction is required for blocking the use of the skeletal muscle exon in nonmuscle cells

    A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells

    Get PDF
    We have investigated transforming growth factor beta (TGF-beta)-mediated induction of actin stress fibers in normal and metastatic epithelial cells. We found that stress fiber formation requires de novo protein synthesis, p38Mapk and Smad signaling. We show that TGF-beta via Smad and p38Mapk up-regulates expression of actin-binding proteins including high-molecular-weight tropomyosins, alpha-actinin and calponin h2. We demonstrate that, among these proteins, tropomyosins are both necessary and sufficient for TGF-beta induction of stress fibers. Silencing of tropomyosins with short interfering RNAs (siRNAs) blocks stress fiber assembly, whereas ectopic expression of tropomyosins results in stress fibers. Ectopic-expression and siRNA experiments show that Smads mediate induction of tropomyosins and stress fibers. Interestingly, TGF-beta induction of stress fibers was not accompanied by changes in the levels of cofilin phosphorylation. TGF-beta induction of tropomyosins and stress fibers are significantly inhibited by Ras-ERK signaling in metastatic breast cancer cells. Inhibition of the Ras-ERK pathway restores TGF-beta induction of tropomyosins and stress fibers and thereby reduces cell motility. These results suggest that induction of tropomyosins and stress fibers play an essential role in TGF-beta control of cell motility, and the loss of this TGF-beta response is a critical step in the acquisition of metastatic phenotype by tumor cells
    • …
    corecore